Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38659835

RESUMO

N-glycosylation is one of the most common protein modifications in eukaryotes, with immense importance at the molecular, cellular, and organismal level. Accurate and reliable N-glycan analysis is essential to obtain a systems-wide understanding of fundamental biological processes. Due to the structural complexity of glycans, their analysis is still highly challenging. Here we make publicly available a consistent N-glycome dataset of 20 different mouse tissues and demonstrate a multimodal data analysis workflow that allows for unprecedented depth and coverage of N-glycome features. This highly scalable, LC-MS/MS data-driven method integrates the automated identification of N-glycan spectra, the application of non-targeted N-glycome profiling strategies and the isomer-sensitive analysis of glycan structures. Our delineation of critical sub-structural determinants and glycan isomers across the mouse N-glycome uncovered tissue-specific glycosylation patterns, the expression of non-canonical N-glycan structures and highlights multiple layers of N-glycome complexity that derive from organ-specific regulations of glycobiological pathways.

2.
Cell Rep ; 32(8): 108064, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32846122

RESUMO

RNA-binding proteins (RBPs) play critical roles in regulating gene expression by modulating splicing, RNA stability, and protein translation. Stimulus-induced alterations in RBP function contribute to global changes in gene expression, but identifying which RBPs are responsible for the observed changes remains an unmet need. Here, we present Transite, a computational approach that systematically infers RBPs influencing gene expression through changes in RNA stability and degradation. As a proof of principle, we apply Transite to RNA expression data from human patients with non-small-cell lung cancer whose tumors were sampled at diagnosis or after recurrence following treatment with platinum-based chemotherapy. Transite implicates known RBP regulators of the DNA damage response and identifies hnRNPC as a new modulator of chemotherapeutic resistance, which we subsequently validated experimentally. Transite serves as a framework for the identification of RBPs that drive cell-state transitions and adds additional value to the vast collection of publicly available gene expression datasets.


Assuntos
Dano ao DNA/genética , Expressão Gênica/genética , Proteínas de Ligação a RNA/metabolismo , Humanos
3.
Nature ; 549(7673): 538-542, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28959962

RESUMO

Glycosylation, the covalent attachment of carbohydrate structures onto proteins, is the most abundant post-translational modification. Over 50% of human proteins are glycosylated, which alters their activities in diverse fundamental biological processes. Despite the importance of glycosylation in biology, the identification and functional validation of complex glycoproteins has remained largely unexplored. Here we develop a novel quantitative approach to identify intact glycopeptides from comparative proteomic data sets, allowing us not only to infer complex glycan structures but also to directly map them to sites within the associated proteins at the proteome scale. We apply this method to human and mouse embryonic stem cells to illuminate the stem cell glycoproteome. This analysis nearly doubles the number of experimentally confirmed glycoproteins, identifies previously unknown glycosylation sites and multiple glycosylated stemness factors, and uncovers evolutionarily conserved as well as species-specific glycoproteins in embryonic stem cells. The specificity of our method is confirmed using sister stem cells carrying repairable mutations in enzymes required for fucosylation, Fut9 and Slc35c1. Ablation of fucosylation confers resistance to the bioweapon ricin, and we discover proteins that carry a fucosylation-dependent sugar code for ricin toxicity. Mutations disrupting a subset of these proteins render cells ricin resistant, revealing new players that orchestrate ricin toxicity. Our comparative glycoproteomics platform, SugarQb, enables genome-wide insights into protein glycosylation and glycan modifications in complex biological systems.


Assuntos
Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/efeitos dos fármacos , Glicopeptídeos/análise , Glicoproteínas/análise , Proteoma/análise , Proteômica , Ricina/toxicidade , Animais , Células-Tronco Embrionárias/enzimologia , Células-Tronco Embrionárias/metabolismo , Fucosiltransferases/genética , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Proteínas de Membrana Transportadoras/genética , Camundongos , Proteínas de Transporte de Monossacarídeos , Processamento de Proteína Pós-Traducional/genética , Proteoma/química , Proteoma/genética , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...